Drone photogrammetry is the science of using aerial images captured by drones to create detailed and accurate 2D maps and 3D models of physical landscapes and structures.
Aerial photogrammetry has been around long before drones started doing it. But drones have made it faster and less expensive, putting it within reach of the budgets of many more people and organizations.
As drone photogrammetry has become more common, new technology has developed to support it, making it not only more accessible from a budget perspective but also from a technical point of view. These days, almost anyone can learn the basics of how to create 3D maps by drone with photogrammetry using a decent consumer drone and the right software.
Credit: DroneDeploy
In this in-depth guide to drone photogrammetry, we’ll cover what it is, how to do it, and the top photogrammetry drones on the market, as well as how to navigate the choice between using photogrammetry or LiDAR for making 3D models.
Here’s everything we cover in this guide in case you’d like to jump around:
Credit: DJI
The DJI Phantom 4 Pro V2 is a go-to option for professional aerial photography and videography, and a solid choice for photogrammetry. It’s no longer the newest model on the market—it came out in 2020—but it’s still a dependable, trusted drone that can do reliable work.
Specs:
Learn more about the DJI Phantom 4 Pro V2.
Credit: DJI
The DJI Mavic 3 Enterprise stands out as a top-tier photogrammetry drone that’s a strong option for commercial and industrial tasks.
Specs:
Learn more about the DJI Mavic 3 Enterprise.
Credit: Parrot
The Parrot ANAFI stands out as a lightweight, professional-grade drone tailored for applications like surveying, mapping, and inspection.
Specs:
Learn more about the Parrot ANAFI.
Credit: Yuneec
The Yuneec Typhoon H Plus is a drone tailored for photogrammetry that carries a high-resolution camera stabilized by a 3-axis gimbal.
Specs:
Learn more about the Yuneec Typhoon H Plus.
Credit: DJI
The DJI Matrice 300 RTK paired with Zenmuse P1 is a top-tier photogrammetry drone. The M300 integrates cutting-edge camera technology with advanced flight features, providing high-precision data for diverse applications like agriculture, forestry, and environmental studies.
Specs:
Photogrammetry is the act of obtaining precise measurements from photographs. The output from doing photogrammetry is a 3D model of an area or object of interest.
To do photogrammetry, you have to take several overlapping photos of the place or thing you want to model, then process those photos using specialized software to convert them into a 3D map.
Credit: DJI
There are two basic types of photogrammetry:
Of course, this guide is focused on the first of these two—aerial photogrammetry performed by drone.
In drone photogrammetry, a drone captures high-resolution aerial images, which are then processed by photogrammetry software to become accurate, detailed 3D models and maps.
In processing, the software identifies common points called “tie points” in the overlapping sections of each image.
By analyzing the slight differences in these tie points’ positions from one photo to the next, the software can deduce the depth or elevation of those points. Essentially, it triangulates the 3D position of each tie point using its 2D positions based on multiple photos.
The result is a dense “point cloud” that represents the area covered in the photos, rendered in three dimensions.
Credit: Pix4D
This point cloud can be further processed to create various outputs, such as Digital Elevation Models (DEMs), Digital Surface Models (DSMs), and orthomosaics. (An orthomosaic is a georeferenced image where distortions due to camera tilt and topography are corrected, making it true to scale.)
Drone photogrammetry can also be used to create textured 3D models, which can be useful in industries like construction, archaeology, and even gaming. These models are a visual representation of an area or object, like a building, complete with textures derived from the photos, making them appear realistic.
Drone photogrammetry is commonly used in several industries these days.
Here are some of the top ones.
Farmers and agronomists are using drone photogrammetry to monitor crops, assess health, and optimize yields.
By creating detailed 3D maps, farmers can detect issues like poor drainage, pest infestations, or areas of low fertility. And by analyzing crops at various stages, farmers can make informed decisions about irrigation, fertilization, and harvesting.
In construction, drone photogrammetry can help with site planning, monitoring progress, and ensuring that projects remain on schedule.
Detailed 3D models provide stakeholders with a clear view of the terrain and existing structures, helping to design and place new constructions.
In real estate, aerial visuals can provide potential buyers with a view of an entire property, proving especially valuable for larger estates or buildings, or in cases where prospective buyers aren’t able to visit the property in person.
Credit: Pix4D
Historians and archaeologists have been using drone photogrammetry to document and preserve ancient sites for a while now.
The technique offers a non-invasive way to study areas of interest, creating detailed models that can be analyzed without physically disturbing the site—a consideration that’s especially important for sites that are deteriorating or at risk of damage.
By regularly mapping a mine or quarry with drone photogrammetry, operators can track changes, calculate volumes, and plan extractions more safely and efficiently. Drone data can also help optimize the extraction processes, monitor equipment, and ensure worker safety.
Environmentalists can use drone photogrammetry for a range of purposes, from mapping erosion on coastlines to tracking deforestation in remote jungles. The detailed data you get from drone imagery can help with monitoring a variety of sensitive ecosystems, understanding changes, and planning conservation efforts more effectively.
In the aftermath of natural disasters like floods, earthquakes, or hurricanes, swift response is crucial. Drone photogrammetry provides emergency responders with up-to-date 3D maps of impacted areas, helping to coordinate relief efforts, assessing damage, and planning recovery operations.
Credit: nearmap
Want to do a drone photogrammetry survey?
Here’s the step-by-step process you can follow to get started.
Credit: Pix4D
Start by evaluating the area you want to survey.
A thorough evaluation will include:
Taking this preliminary step will help ensure that you’re prepared, reducing the chances of issues during the actual data collection flight.
Based on the size of the area, resolution needed for the survey, and environmental conditions, choose a drone and camera that will allow you to accomplish your goals.
To guide you, jump up to see our picks for the best photogrammetry drones.
Using drone mapping software, create a flight path that provides ample overlap between shots.
Typically, a 60-80% overlap is recommended for photogrammetry to make sure you get both enough detail and enough data to make your 3D map comprehensive.
Place visible markers in the survey area that can be easily identified in the drone images. These GCPs will aid in calibrating and aligning the captured data, ensuring accuracy in the final model.
*Note: Not all drones require GCPs. Some drones, like the WingtraOne Gen II, don’t need them—make sure to check your drone’s specs to see whether GCPs are recommended.
Fly the drone following the pre-defined path. Maintain a steady speed and altitude, ensuring that images are captured at regular intervals.
As you fly, make sure to monitor the drone’s battery, keep it in your line of sight, and adjust the flight path if faced with unexpected obstacles.
Once you’ve captured all the images you need, use photogrammetry software to stitch the images together. The right software will allow you to turn your visual data into a detailed and accurate 3D model of the survey area.
Examine the 3D model your software has generated for any inconsistencies or gaps in data. Refine the model using the software tools and, if needed, consider revisiting the site for additional data capture.
Once you’re satisfied with the quality and accuracy of your 3D model, it can be presented in various formats depending on what you want—digital maps, 3D printed models, or interactive visual presentations are all ways that your data might be shared with others.
Want to learn more about drone surveying? Check out our in-depth guide.
An orthomosaic made with drone photogrammetry | Credit: Pix4D
When you’re first getting started with drone photogrammetry, it’s a good practice to capture imagery using both camera angles to ensure comprehensive coverage for your 3D modeling.
As your expertise grows, you’ll be able to choose when to use nadir or oblique angles exclusively.
Photogrammetry isn’t new. For years, experts have used it to document structures, create topographical maps, and survey large areas of land.
But the advent of relatively inexpensive drone technology has helped make photogrammetry available to a much larger group of people, bringing with it an array of advantages.
Here are the top eight benefits drone photogrammetry provides over traditional methods.
Traditional aerial photogrammetry often involves hiring aircrafts, which can be prohibitively expensive. And traditional terrestrial photogrammetry can be very time-consuming, another factor that can drive up the cost of an operation.
Drones, on the other hand, have become increasingly affordable, and their operational costs are significantly lower, making them an accessible tool for photogrammetry projects of all sizes.
Drones can be deployed rapidly and can cover large areas in a relatively short time. Whereas traditional ground-based surveys might take days or even weeks to cover a large area, drones can capture data in the same area in a fraction of the time.
This speed is especially helpful for time-sensitive projects. Additionally, you can process visual data collected by drone quickly, providing actionable insights in a fraction of the time that traditional methods might require.
Traditional ground-based surveying, especially in challenging terrains or hazardous areas, can pose risks to surveyors.
Drones eliminate the need for people to put themselves in potentially dangerous areas by allowing you to collect all the data you need remotely, thus ensuring safety and minimizing liabilities.
Drones can fly at lower altitudes compared to larger aircrafts, capturing images with incredible detail. This capability is important for use cases that require precise measurements or high-definition visuals.
Traditional methods might be restricted by factors like difficult terrains or accessibility issues. Drones can simply fly over these obstacles, ensuring comprehensive data collection even in hard-to-reach or hazardous locations.
Also, drone-collected data seamlessly integrates with contemporary GIS (Geographical Information Systems) and CAD (Computer-Aided Design) tools. These integrations ensure smooth workflows and the capability to generate diverse outputs, from 3D models to contour maps.
Most professional drones offer real-time data transmission, allowing for immediate assessment and decision-making. This real-time data can be invaluable in scenarios like construction monitoring or inspections, where on-the-spot input might be required to ensure you get the data you need.
Ground-based survey methods, especially in pristine ecosystems, can disturb the environment. Drones, by contrast, provide a non-intrusive means to gather data without leaving a significant footprint.
Drones can be employed for a diverse range of projects, from small plots of land to vast landscapes. Their scalability ensures that they can cater to different project scopes without the need for significant adjustments in methodology.
You can make 3D models using drones with photogrammetry or with LiDAR—so which one is better?
The answer is: it depends. While both options can be used to create high-resolution 3D models, they use different methods and offer unique advantages and challenges.
On one hand, photogrammetry is good for creating visually rich 3D models. And on the other, LiDAR stands out in terms of precision and versatility, especially in challenging, obscured terrain, like areas covered by forest canopy.
Below, we’ll compare the two approaches to help you navigate the decision and choose the right one for your needs.
3D models made with drone photogrammetry require you to capture multiple overlapping images of a site from various angles using a drone-mounted camera. These images are then processed and stitched together with specialized software to generate a detailed 3D model.
3D models made with drone LiDAR use laser pulses to measure distances between the sensor and the ground or other targets using a drone-mounted LiDAR sensor. While the drone flies, the LiDAR sensor sends out thousands of laser pulses every second. By measuring the time it takes for each pulse to return, the sensor calculates precise distances, creating a dense point cloud that can be converted into a 3D model. (To understand the approach, think of how sonar works, but with LiDAR using laser pulses instead of sound waves.)
A LiDAR scan from DJI | Credit: DJI
Drone photogrammetry is best for projects like real estate development visualization, archaeological site documentation, or any scenario where visual detail is paramount.
Drone LiDAR is best for projects requiring high precision, such as flood modeling, forest canopy studies, or urban planning in areas with significant vegetation cover.
As you can see, the choice between drone photogrammetry and drone LiDAR depends largely on the project’s requirements, budget, and desired output.
We recommend you do your research, consider the needs of your project and your budget, and reach out to colleagues or trusted advisors to see what they’re doing for use cases similar to yours.
There are several different software providers out there that support drone photogrammetry. Below is our list of just a few of the top options on the market.
Please note that this list isn’t meant to be exhaustive—to learn more about drone photogrammetry software, check out our in-depth guide on the subject.
Credit: Pix4D
Pix4D is one of the most highly regarded software vendors in the drone industry. The company makes several solutions targeting different types of drone use cases and data manipulation needs.
Pix4D standout software features:
Industry-specific offerings:
Learn more on the Pix4D website.
A flight plan made on DroneDeploy | Credit: DroneDeploy
DroneDeploy has one of the most user friendly mobile apps on the market for drone photogrammetry. It’s compatible with most drones and is already in use in over 120 countries. The top use cases for DroneDeploy include construction and agriculture.
Here’s how to use DroneDeploy:
Learn more on the DroneDeploy website.
Credit: Propeller Aero
PropellerPPK is a more cost-effective software option when looking for drone photogrammetry software. Construction is the primary use case for PropellerPPK.
Here are some things to note about PropellerPPK:
Want more information on software for drone photogrammetry? Check out our guide to drone photogrammetry software.